
PureWeb® STK 4.0

Developer’s Guide

The information contained herein is proprietary and confidential and cannot be disclosed or duplicated
without the prior written consent of Calgary Scientific Inc.

Copyright © 2013 Calgary Scientific Inc. All rights reserved.

About Calgary Scientific
Calgary Scientific Inc. is dedicated to providing advanced visualization, web enablement, and mobility enhancement
solutions to industries looking for secure access and use of their data or graphics intensive applications, while using

their existing systems. Visit www.calgaryscientific.com for more information.

Notice
Although reasonable effort is made to ensure that the information in this document is complete and accurate at the
time of release, Calgary Scientific Inc. cannot assume responsibility for any existing errors. Changes and/or
corrections to the information contained in this document may be incorporated in future versions.

Your Responsibility for Your System’s Security
You are responsible for the security of your system. Product administration to prevent unauthorized use is your
responsibility. Your system administrator should read all documents provided with this product to fully understand the
features available that reduce your risk of incurring charges for unlicensed use of Calgary Scientific products.

Trademarks
© 2013 Calgary Scientific Inc., ResolutionMD, PureWeb and the Calgary Scientific logo are trademarks and/or
registered trademarks of Calgary Scientific Inc. or its subsidiaries. Any third-party company names and products are
for identification purposes only and may be trademarks of their respective owners.

Released by

Calgary Scientific Inc. www.calgaryscientific.com.

Document Version: PW4.0_Developers_Guide_07-2013_v1.000.00

http://www.calgaryscientific.com
http://www.calgaryscientific.com

Developer’s Guide 3

Table of Contents
Chapter 1 Introduction... 7

The STK .. 8
Documentation.. 8

Chapter 2 PureWeb Fundamentals... 9

Basic Architecture.. 9
Service.. 10
Client... 10
Server ... 10

The Main Building Blocks .. 11
Views .. 11
Commands ... 12
Application State ... 12
Events... 13

Communication Flow... 13
How Application State Remains Synchronized................................... 14
How Images in Views Are Kept Up-to-Date.. 14
How Events and Commands Are Communicated 15

Additional Components ... 15

Chapter 3 PureWeb Enablement in a Nutshell .. 16

Setting Up the Server Connection ... 16
Setting Up the Views ... 17
Adding User Input Events to Views ... 18
Designing the Client Interface ... 18
Sending Instructions Using Commands .. 18
Manipulating Application State .. 19

Developer’s Guide 4

Table of Contents

Chapter 4 Communicating with the Server.. 20

About the Server.. 20
Server Communication Workflow .. 20
Connecting the Service ... 21

Graceful Disconnect ... 22
Connecting the Client .. 22

Chapter 5 Views ... 25

About Views... 25
Remoting a Service View .. 26

The (I)RenderedView Interface... 26
Sample Implementation .. 27

Displaying a Remoted View in a Client.. 29
Handling User Input... 29

Keyboard and Mouse Events.. 29
Converting Touch-Screen Input to Keyboard Events 32

Defining Image Quality for Views .. 33

Chapter 6 Commands .. 36

About Commands.. 36
Setting Up Commands on the Service .. 37

Registering and Unregistering Command UI Handlers....................... 37
Populating Callback Parameters on the Service 37

Sending Commands from the Client.. 38

Chapter 7 Application State .. 40

About Application State ... 40
State Tree .. 41
Initializing Application State ... 42

Creating State Initialization Handlers .. 43
Interacting With The Application State... 43

Direct Interaction... 43
Advanced Methods ... 44

Change Handlers... 45
Value Change Handlers .. 45
Child Changed Handlers... 46

Developer’s Guide 5

Table of Contents

Chapter 8 Designing the Client Interface... 47

Feature Set and Appearance .. 47
Adding a PureWeb Layer to UI Elements .. 48

Using Commands ... 48
Using Appplication State... 49

Chapter 9 The Resource Manager .. 50

Managed Access ... 51
Workflow.. 51
Example - Screen Captures .. 51

Service Application Code (Storing Data)... 52
Client Application Code (Retrieving Data) .. 53

Resource Distribution Methods ... 54

Chapter 10 Debugging... 56

Platform-Specific Debugging ... 56
Diagnostics Panel.. 57

Adding a Diagnostics Panel to a Client... 57
Using the Diagnostics Panel ... 58

Index ... 62

Developer’s Guide 6

Preface
Welcome to the PureWeb STK Developer’s Guide, part of the PureWeb® Software
Transformation Kit (STK) documentation suite.

Intended Audience

This document is intended to be read by software developers who plan to install
and develop applications using the PureWeb STK.

Making Comments on This Document

If you especially like or dislike anything about this document, feel free to e-mail
your comments to techpubs@calgaryscientific.com.

Contacting Calgary Scientific Support

Use one of the methods in the table below to contact Calgary Scientific support.

Web Site E-Mail

 support.getpureweb.com support@getpureweb.com

mailto:techpubs@calgaryscientific.com
support.getpureweb.com
mailto:support@getpureweb.com

Developer’s Guide 7

Chapter

1 Introduction
PureWeb® is a platform that enables the rapid transformation of enterprise
software into cloud-ready, web and mobile applications.

PureWeb-enabled applications are centrally hosted on a server and delivered to
the end users, from workstations to hand-held devices, using standard web
technologies. The application framework is built specifically to leverage HTTP(S)
and XML for the highest level of flexibility, interoperability, consistency and
performance. This offers several advantages:
• The PureWeb-enabled application and the PureWeb server can be deployed

on existing high-performance infrastructure, eliminating the need to invest in
new hardware. Alternately, the PureWeb-enabled application and its server
can be deployed in a number of cloud-computing environments.

• For users, the client application gives a natural web or mobile experience. It
feels like a tablet program on an iPad and like a smart phone program on an
Android, but it is really the same software on the server.

• The client is very thin, since the rendering and heavy computation is executed
remotely on the server.

• The data remains stored where it is; PureWeb does not move or copy it, and
no application data ever persists on the device itself. This keeps the data
secure, while still allowing compliant, authenticated access.

• Applications can be accessed through internet browsers capable of running
Microsoft Silverlight and Adobe Flash, as well as from many smart phones
and tablet devices. PureWeb also offers an HTML5 client that can be used in
most HTML5-capable browsers and environments.

The PureWeb STK offers a number of powerful features, including synchronized
event-based state management, command-response APIs, tools for collaboration,
and a high performance image remoting pipeline. These allow the creation of
mobile and web client applications that were traditionally difficult to bring to
these platforms, such as those requiring the interactive visualization of large,
secure data sets.

Developer’s Guide 8

Chapter 1: Introduction The STK

Although very powerful, the PureWeb software transformation technology is
designed to be easy to master and provides a high degree of abstraction.
PureWeb shields developers from the burden of managing the details of image
and application state communication, allowing them to focus on creating the best
experience for their users.

Re-purposing an existing application using the PureWeb STK (software
transformation kit) does not require a costly code rewrite. Rather, developers
integrate it directly with their existing code by adding a thin layer between the
logic engine and the interface components.

This approach keeps the logic of the application intact. The client and the
PureWeb-enabled application tiers are isolated from each other; developers
maintain one code base, and can quickly implement clients as needed.

The STK
The PureWeb STK (software transformation kit) provides developers the tools
that they need to implement the PureWeb solution in their own applications, in
particular:
• Service APIs, to modify existing C#, C++ and Java software to function as a

PureWeb service.
• Client APIs, which can be used to create mobile and web versions of new or

existing applications. These APIs are currently available in the following
languages: Silverlight, Flex, Java, Android, iOS, and HTML5.

• Sample applications for each supported service and client platforms, which
illustrate key concepts of PureWeb enablement. They can be used as a
starting point for developers to create their own PureWeb-enabled
applications.

Documentation

In addition to the above, the STK includes a complete documentation suite that
explains the PureWeb solution, including:
• this Developer’s Guide, which describes how to PureWeb enable applications

using the service and client APIs
• an Installation Guide
• a Server Administration Guide
• Quick Start Guides for each supported programming platform, that illustrate

how to quickly get started using the sample applications as models
• Complete API reference material for service and client platform.

For more information about the product, visit www.getpureweb.com.

http://www.getpureweb.com

Developer’s Guide 9

Chapter

2 PureWeb
Fundamentals

This chapter describes the basic architecture and main building blocks of PureWeb,
as well as the flow of communication between these components. The concepts and
terminology described in this chapter will help developers navigate the rest of this
document.

Basic Architecture
A PureWeb-enabled system consists of three components: a service application,
a client application, and a server. The server and service run on the same system
node, and the client runs on remote or mobile user systems.

Developer’s Guide 10

Chapter 2: PureWeb Fundamentals Basic Architecture

Service

A PureWeb service is a C#, C++ or Java application that has been transformed using
the PureWeb service STK APIs to connect it to a PureWeb server, making it
accessible to PureWeb client applications. It remains responsible for performing all
of the application logic – this is what allows the clients in a PureWeb solution to
remain so thin. The clients access this application logic through PureWeb “Events”,
“Commands” and “Application State”.

The service is also responsible for remoting the rendering of views, which provides
client applications the information they need to create user interfaces.

The service also manages the synchronization of the state of the application
between itself and the clients applications.

Client

A PureWeb client is a mobile or web-based representation of a service application.

The first client is usually created in tandem with the service. Once the application is
PureWeb-enabled, the STK makes it simple to develop additional clients, with little
or no modification to the service.

The STK supports several languages and platforms to develop client applications:
Silverlight, iOS, Java Swing, Android, Flex, and HTML5.

The client functionality does not have to be an exact replica of what’s available on
the service. It is possible to expose only a subset of features, and to add custom
features not available in the original application, assuming the necessary handling
logic is added to the service. It is also possible to change the look and feel of each
client. For more information, see “Designing the Client Interface” on page 47.

Server

The PureWeb server leverages existing web server technology (Apache Tomcat) to
broker communications between the client and service. It serves as a session
manager, fields connections from clients, as well as launches and load-balances
service instances. The server manages collaborative sessions, allowing two or more
users to view and interact with the same service using independent clients.

The server coordinates client disconnection and server process termination. It also
provides a variety of server diagnostic and application information.

For detailed information about managing and customizing the server, refer to the
PureWeb Server Administration Guide.

Developer’s Guide 11

Chapter 2: PureWeb Fundamentals The Main Building Blocks

The Main Building Blocks
Interactions between client, service and server happens through four main building
blocks: views, commands, application state, and events.

Views

In its most simple form, a PureWeb view is an area on the screen that contains an
image. Developers inject mouse and keyboard events into views to make them
interactive.

Developers can convert almost any portion of the original application’s visible user
interface into a view. Additionally, they may have several independent views on the
same client screen, each with its own set of mouse and keyboard events.

Developer’s Guide 12

Chapter 2: PureWeb Fundamentals The Main Building Blocks

A common use for PureWeb views is the remoting of 3D rendered images. The
service application handles the intensive image rendering, while clients simply
display the remoted images within the views. The data used to generate the images
remains securely stored on the server.

In the PureWeb STK, the interface used to create views is called either
IRenderedView or RenderedView, depending on the programming language. This
interface handles image encoding, quality and rate, sheltering developers from
having to worry about image transmission bandwidth and latency.

For more information, see the chapter “Views” on page 25.

Commands

A command is an instruction sent from the client for the service to execute a given
function.

For example, the application could have a “Clear” function that erases the scribbles
on a white board panel. To enable this functionality on a client application, add an
“Erase All” button which, when clicked, queues a Clear command; the service would
then execute the Clear function.

For more information, see the chapter“Commands” on page 36.

Application State

Application state is essentially a hierarchical set of properties and values which is
automatically shared and synchronized between the service application, and any
clients using or collaborating with that service application.

The property values are stored in XML format, and reside on both the service and
the client. When creating the service application, developers, decide which
properties are stored in this data structure.

For example, if the user of an application has the ability to change the color of an
element on the screen, this color is a property value that could be stored in
application state.

Unlike commands, which are one-way communications from a single client to the
service, application state can be used to make changes known to several
collaborating clients automatically.

For more information, see the chapter “Application State” on page 40.

Developer’s Guide 13

Chapter 2: PureWeb Fundamentals Communication Flow

Events

Events in PureWeb work in a similar fashion as events on other user interface
frameworks.

PureWeb uses events in conjunction with views, commands, and application state to
capture user input on the client.

For instance, when the user interacts with the client, for example by clicking on a
button or pressing a key, the handler for that event could perform one or more of
the following:
• change the value of a state property (for example, the color of an element on

the screen),
• send a command to the service (for example, a command to connect when

the user clicks the Connect button),
• transmit an updated image to display in a view.

The PureWeb STK APIs also provide the functionality to convert hand gestures on
mobile devices to mouse events. For more information, see “Converting
Touch-Screen Input to Keyboard Events” on page 32.

Communication Flow
Communication between the service, client, and server is handled via an HTTP(S)
connection. In the HTML5 client, the connection occurs via web sockets..

The sections below provide a general overview of how these communications take
place. This is for information purposes only, as all this is handled directly by
PureWeb, and developers do not need to worry about managing image and
application state communication.

How Application State Remains
Synchronized

The state of an application is stored on both the client and service as XML. Changes
to the state can be introduced from either the service or the client, with the
differences being transmitted to the other side to ensure state synchronicity.

Specifically, the service creates an instance of the StateManager class
(responsible for maintaining application state) and passes it to an instance of
StateManagerServer, which handles communication with the PureWeb server
over a TCP socket. Messages arriving from the client via the server as XML text are
converted to lists of command objects that are executed by the StateManager.

In executing the commands, the application will generate response objects,
including changes to the application state. The StateManagerServer converts the
response objects to XML and multipart messages that are passed back to the clients
via the PureWeb server.

Developer’s Guide 14

Chapter 2: PureWeb Fundamentals Communication Flow

Once the StateManager instance exists in the service, it is possible to create event
handlers that are invoked when specific nodes in the application state change.

For more information, see the chapter “Application State” on page 40.

How Images in Views Are Kept Up-to-Date

PureWeb ensures that clients views receive images from service views by overriding
the handler for the service's image drawing event and requesting an update to be
sent to the client.

it is also possible to use these same PureWeb methods to request image updates
outside of the standard application image updating scenarios.

For example, let’s assume a client application has a Clear button which, when
pressed, sends a ClearPage command to the service. The service receives the
command and responds by deleting drawing on a page. It then informs the server
that an updated image (a blank page) is available, and publishes the new image to
the client view.

How Events and Commands Are
Communicated

As a user interacts with a PureWeb client, this might be generating keyboard or
mouse events, in which case the client sends the events as XML through the
PureWeb server, to the service application. The PureWeb APIs then translate these
items into system-level events, allowing the service application to receive them as
though the user was interacting directly with it.

Developers can also instrument native client user interface components, such as
buttons and other controls, to generate application-specific commands. When a
user presses such a button, a developer-defined command is sent from the client, to
the PureWeb server, to the service application, which responds accordingly.

Developer’s Guide 15

Chapter 2: PureWeb Fundamentals Additional Components

Additional Components
The PureWeb STK also contain tools that provide functionality for data storage,
diagnostics, logging and collaboration, in particular:
• Resource Manager: An interface that allows users to store and retrieve files

on the service machine.
• Diagnotics Panel: A set of built-in tools that developers can use to help

configure and troubleshoot PureWeb client applications during the
development phase. The panel allows developers, for instance, to display
trace messages going to and from the server, to view the XML representation
of the application state, and to measure bandwidth and latency.

• Acetate: An interface which allows users in a collaborative session to draw
and write on an overlay over rendered views.

Developer’s Guide 16

Chapter

3 PureWeb Enablement
in a Nutshell

This chapter gives a high-level overview of the steps involved in PureWeb
enabling a service and client application. More detailed explanations and code
samples are provided in the other chapters of this Developer’s Guide.
Although this chapter describes the process in a linear fashion, in a typical
PureWeb project, the order would be less rigid and more iterative: for instance,
developers could add buttons to the client and hook them to the service using
commands or state, add more interface elements and hook these up to the
service, decide that another view is needed, and so on.

Setting Up the Server Connection
The PureWeb server acts as an communication intermediary between the client
and service application. Consequently, the first step in PureWeb-enabling an
application is setting up connections to ensure that both the service and the
client can communicate to the server.

On the Service

Setting up the connection between an existing application and the server
effectively converts that application into a service.
This is done with a few simple lines of code, an example of which is shown in the
section “Connecting the Service” on page 21.

Developer’s Guide 17

Chapter 3: PureWeb Enablement in a Nutshell Setting Up the Views

On the Client

The code to set up the connection between the client and the server first uses
event handlers to determine if the service is connected.
Typically, a different handler is used for each possible state that the service may
be in: active, disconnected, stalled, etc.
If the service is connected, then the client can connect. Sample code for this is
provided in section “Connecting the Client” on page 22.

Setting Up the Views
Once there is an established connection to the server from the service and the
client side, the next step typically involves choosing which views to display on the
client.
As mentioned earlier, PureWeb-enabled application can remote all, or just a
subset, of the view interfaces in the existing application. Which interfaces a
developer chooses to remote depends entirely on the functionality that needs to
be exposed in the web or mobile client. It is recommended to start by remoting
one view at a time.

On the Service

Since the service application is responsible for generating and processing the
images, most of the effort involved in remoting a PureWeb view comes down to
implementing the RenderedView interface from the service STK.
Sample code illustrating how to work with views on the service side are provided in
the chapter “Views” on page 25.

On the Client

The PureWeb STK provides a native view for each client platform, exposing both
the native language functionality in addition to the relevant PureWeb APIs.
Displaying a remoted view in a client application is quick and easy. Use the view
element, available in the client STK, to add the view where it should be displayed.
For a code sample of this task, see section “Displaying a Remoted View in a
Client” on page 29.

Developer’s Guide 18

Chapter 3: PureWeb Enablement in a Nutshell Adding User Input Events to Views

Adding User Input Events to Views
PureWeb developers allow users to interact with views by adding events that
capture keyboard and mouse input. It is also possible to simulate keyboard input
for touch-screen devices.
The RenderedView interface provides the necessary methods for injecting
mouse and keyboard events into the views.
Keyboard and mouse inputs that occur on the client application are captured by
the postKeyEvent and postMouseEvent functions and sent to the original
application. For more information, see the section “Handling User Input” on
page 29.

Designing the Client Interface
After creating the views, a logical next step is to add buttons, dialog boxes and
other user interface elements to the client application. These are built using the
native toolkit for the client platform.
The feature set and appearance of the clients created using PureWeb do not need
to match that of the original application. When designing new clients, developers
can modernize the look and feel, reduce the feature set to simplify a mobile client
application, or add new features that were not in the original application. It is also
possible to combine PureWeb views with other native UI elements to create an
entirely new application user interface for the client. For more information on
these possibilities, see the chapter “Designing the Client Interface” on page 47.
In large part, the remainder of the PureWeb enablement process then consists of
hooking these interface elements to the service-side functionality using PureWeb
commands and application state.

Sending Instructions Using Commands
Commands are often used with event-driven user interface components such as
buttons as a way to hook up the service-side functionality. They are simply
instructions from the client requesting the service to execute a specific function.
Commands are one-way communications between a single client and the service.
For communications from the service to the client, as well as for communication
between multiple client applications, developers should use the application state
manager instead.
Setting up commands in PureWeb is quick and easy, as described below.

Developer’s Guide 19

Chapter 3: PureWeb Enablement in a Nutshell Manipulating Application State

On the Service

Before a client can send commands, the service must be setup to handle them
correctly. This consists in a single line of code that adds a UI handler, specifies the
command string, and defines the handling function.
For an example of this code, see section “Setting Up Commands on the Service” on
page 37.

On the Client

The command is expressed as a string and uses the client-side queueCommand
function; it can have arguments and, optionally, a callback can be triggered on the
client, completing the communication loop.
Several code examples are provided in the section “Sending Commands from the
Client” on page 38.

Manipulating Application State
Once the client contains interface elements, the service needs to know if the
properties of these elements change, for example if a user changes the color of a
pen, so that these properties can remain synchronized between the client and the
service.

Since commands are a one-way communication between a single client and the
service, state is used in most other situations.
This is done through the StateManager class, which provides the methods to
write, read, edit and delete content from the state tree.
Code samples for working with state can be found in the chapter “Application
State” on page 40.

Developer’s Guide 20

Chapter

4 Communicating with
the Server

This chapter describes how to establish server connections in the service
application and the client application.

About the Server
The PureWeb server is the intermediary that manages communications between a
service and its clients. The PureWeb service and client applications cannot function
properly if their connection to the server is not properly established. The PureWeb
server also acts as a session manager, coordinates client disconnection and service
process termination, and provides a variety diagnostic and application information.

The server must be on the same system node as the service application, and must
be configured correctly. This chapter assumes that the server is correctly set up. For
information on performing these tasks, please refer to the PureWeb Server
Administration Guide.

Server Communication Workflow
In a typical PureWeb application, the workflow when establishing server
connections is as follows:
• The client application initiates the connection process by requesting a session

from the server.
• The server responds by launching the service application.
• The service, upon starting up, also connects to the server.
• The client then connects with the established session.

Developer’s Guide 21

Chapter 4: Communicating with the Server Connecting the Service

Connecting the Service
Connecting the service to the server is the first step of the PureWeb enablement
process. The code for this task does more than just establishing that connection:
it effectively sets up the desktop workstation application to behave as a service.
This can be accomplished using just a few lines of code. Below is an example of
the service-side code in C#:

This code accomplishes the following:
• Declares a static instance of the PureWeb StateManager class (line 3). This

class can be globally used by the rest of the application. It is responsible for
creating and updating application state, responding to input events and
commands sent from the client, and generating responses such as update
images to send back to the client application.

• Initializes the StateManager class with the service application's name
(line 10).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

17

18

19

20

21

22

23

24

static class Program

{

public static PureWeb.Server.StateManager StateManager;

/// <summary>

/// The main entry point for the application.

/// </summary>

[STAThread]

static void Main()

{

StateManager = new PureWeb.Server.StateManager("MyApp",
Dispatcher.CurrentDispatcher);

StateManager.Uninitialized += new
EventHandler(StateManager_Uninitialized);

StateManagerServer server = new StateManagerServer();

if
(!string.IsNullOrEmpty(System.Environment.GetEnvironmentVariab
le("PUREWEB_PORT")))

{

server.Start(StateManager);

}

}

static void StateManager_Uninitialized(object sender, EventArgs
e)

{

Application.Exit();

}

}

Developer’s Guide 22

Chapter 4: Communicating with the Server Connecting the Client

• Adds an event handler to the PureWeb session uninitialization event, to allow
for graceful disconnect (line 11).

• Creates and initializes an instance of the StateManagerServer class
(line 13). This implements an input/output thread to receive events and
commands from the client. Assuming the PUREWEB_PORT environment
variable is defined, this start the PureWeb session.

• Starts the server using the server.start method (line 17).
• Provides the uninitialization event handler, which shuts the application down

when the PureWeb session is terminated (line 20).

Graceful Disconnect

The sample code above simply allows the session to terminate if the service
application stops responding.
However, it is common practice for service applications to handle a termination
command in response to the PureWeb session ending. It is also recommended to
initiate a PureWeb session shutdown upon exiting the application.
To explicitely end a session upon termination, call the Stop() function on the
StateManagerServer instance in the application exit event handler.

Connecting the Client
This section deals with the connection process of a single client to a service
application, and doesn't touch upon the case of multiple collaborative users.
The code to connect a client application should cover the changes in the state of
the service session:
• Add event handlers that listen for changes in the service state (the client will

connect to a session only when it is notified that the service is connected).
• Create a URL which targets the correct server application and specifies the

client platform.
• Connect to the server using an instance of the PureWeb Framework class and

the constructed URL.
• Gracefully disconnect from the server.
Here’s an example of what the state listening part of this code might look like in a
Silverlight client:
First, add handlers for server state changes

1

2

Framework.Instance.Client.IsStalledChanged += new
EventHandler(Client_IsStalledChanged);

Framework.Instance.Client.SessionStateChanged += new
EventHandler(Client_SessionStateChanged);

Developer’s Guide 23

Chapter 4: Communicating with the Server Connecting the Client

Then, define the handler for stalled connections on the server. In this example,
the handler is named Client_IsStalledChanged and it simply logs the event.

Refer to the state change handler (Client_SessionStateChanged) to find out
what state the session is in, and handle each state appropriately. For the sake of
keeping the example simple, the code for each case (failed, disconnecting, etc.)
alerts the user of the current state with message boxes, but actual applications
would be expected to properly handle changes in session state.

1

2

3

4

5

void Client_IsStalledChanged(object sender, EventArgs e)

{

string message = Framework.Instance.Client.IsStalled ? "Stalled" :
"Not stalled";

Trace.WriteLine(message);

}

1

2

3

4

5

6

7

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

void Client_SessionStateChanged(object sender, EventArgs e)

{

if (Framework.Instance.Client.SessionState == SessionState.Failed)

 {

 Framework.Client.Disconnect();

 MessageBox.Show("The connection to the server has been closed.");

 }

{

 MessageBox.Show("You are now logged out and disconnected.");

 }

else if (Framework.Instance.Client.SessionState ==
SessionState.Connecting)

 {

 MessageBox.Show("You are now logged out and disconnected.");

 }

else if (Framework.Instance.Client.SessionState ==
SessionState.Active)

 {

 if (Framework.Client.IsConnected)

 {

 // Bring the user to your application's main page.

 }

 }

}

Developer’s Guide 24

Chapter 4: Communicating with the Server Connecting the Client

Next, connect to the PureWeb server. This code must be placed after the
initialization code.

Note also that in the above example, the server authentication credentials are
hard-coded into the application for illustration purposes. In real life, you would
likely handle authentication by using a custom login page.

1

2

3

4

5

6

7

8

System.Diagnostics.Debug.Assert(HtmlPage.IsEnabled);

// Get the current URL from the browser window

var href = (string)HtmlPage.Window.Eval("document.location.href");

// Start a new session with default credentials

Framework.Instance.Client.AuthorizationInfo = new
BasicAuthorizationInfo() { Name = "admin", Password = "admin" };

}

// Call the PureWeb framework's connect method using the URL you
created

Framework.Instance.Client.Connect(href);

Developer’s Guide 25

Chapter

5 Views

This chapter describes how to use the IRenderedView interface to make image
elements of the service application visible to client applications in the form of
PureWeb views.
Depending on the programming language, in some of the PureWeb service APIs
this interface is called RenderedView; this is why in the rest of this chapter, it is
referred to as (I)RenderedView.

About Views
In its most simple form, a PureWeb view is an area on the screen that contains an
image; this image is typically a portion of the original application’s visible user
interface. It is possible to have several independent views displayed on the same
client screen.
PureWeb views are at the heart of the PureWeb STK. Here are some reasons why:
• They allow clients to be very thin, since the service application remains

responsible to display the views displayed on the client application.
• They allow web and mobile users to interact seamlessly with complex

graphical information, such as 3D images or animations, as if the entire
application was native to their device, even across low bandwidth networks.

PureWeb allows developers to combine views with other native UI elements to
create an entirely new application user interface for each client. For more
information, see the chapter “Designing the Client Interface” on page 47.
Developers can inject mouse and keyboard events into views to make them
interactive; each view can have its own set of events. For more information, see
“Displaying a Remoted View in a Client” on page 29.
Developers also can also set parameters that control the quality of graphics
displayed in views. For more information, see “Defining Image Quality for Views”
on page 33.

Developer’s Guide 26

Chapter 5: Views Remoting a Service View

Remoting a Service View
Since service applications are responsible for generating and processing the
views, most of the effort involved in remoting a PureWeb view comes down to
implementing the (I)RenderedView interface from the service STK.
There are two major approaches to implementing this interface:
• Implement it directly in each class where a view must be rendered. This

method may work when the number of views is low, but in most cases, it is
not the best option.

• Create a generic PureWeb view handling class. This is more efficient when
there are several views; it is the approach discussed in the rest of this chapter.

In the Java service STK, such a generic class can be found in the samples; it is
called RemotedPanel.java; in the C# service STK, it is called
RemotedControl.cs. We encourage developers to use or reference these
generic classes in their own PureWeb projects, and we recommend using the
adapter design pattern for this.

The (I)RenderedView Interface

The (I)RenderedView interface requires the implementation of five functions,
summarized in the table below.

The actual content of each of these functions will usually reflect the behavior of
the application before it was PureWeb-enabled. PureWeb is structured in a way
that allows the original logic and functionality to remain essentially unchanged.

Function Description

setClientSize Specifies the desired rendering size of a view in pixels.

getActualSize Returns the actual size of the view.

renderView Handles the actual rendering of the view.
It is called by the PureWeb server when requesting an
updated image.

postKeyEvent Communicates incoming keyboard events from the
client, making them available to the service
application.

postMouseEvent Communicates incoming mouse events from the client,
making them available to the service application.

Developer’s Guide 27

Chapter 5: Views Remoting a Service View

Registering Views

Views are identified by a unique name, which must be registered with the
PureWeb state manager. For more information on state, see “Application State”
on page 40.
Where a view is registered depends on whether or not the (I)RenderedView
interface is implemented in a generalized view handling class.
• If a generic view handling class is not used, register the view where desired

within the view class – that may be the constructor of the class or another
initializing function.

• If a generic view class is used, it is recommended to register the view upon
construction of the view handling class – this ensures this handler class’
lifespan equals the registration period of the view it handles.

In either case, the command to register the view is the same. Below is an example
of this command in C#:

Sample Implementation

Below is a basic example of an implementation of the (I)RenderedView
interface in a Java Swing panel class.

1 Program.StateManager.ViewManager.RegisterView(“MyView”, this);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

public class PWPanel extends JPanel implements RenderedView{

protected final String viewName;

public PWPanel(String viewName){

this.viewName = viewName;

}

public void renderView(RenderTarget target){

paintComponent(target.getImage().getBitmap().getGraphics());

}

public Dimension getActualSize(){

return getSize();

}

public void setClientSize(Dimension clientSize){

if (!getSize().equals(clientSize)){

setSize(clientSize);

invalidate();

}

}

//continued on next page

Developer’s Guide 28

Chapter 5: Views Remoting a Service View

In the above code, PWPanel is a reduced form of the RemotedPanel included in
the Java service STK.
The renderView function makes a call to the Java Swing paintComponent
function. The contents of this function depends on what will be drawn to the
screen and how.
The definitions of getActualSize and setClientSize simply make use of the
JPanel’s setSize()/getSize() functions to get and set the dimensions of
the panel.
The definitions for postKeyEvent and postMouseEvent are intentionally left
blank, as they are be discussed further in this chapter (see “Handling User Input”
on page 29).
This code illustrates the implementation of (I)RenderedView in its most basic
form. For more advanced example, refer to the sample applications provided with
the STK.
• Java:

[PureWeb_directory]\SDK\Samples\Java\src\server\pureweb\samp
les\RemotedPanel.java

• C#:
[PureWeb_directory]\SDK\Samples\Scribble\ScribbleAppCsharp\R

emotedControl.cs

20

21

22

23

24

25

26

27

public void postKeyEvent(PureWebKeyboardEventArgs keyEvent){

//Discussed later in this chapter

}

public void postMouseEvent(PureWebMouseEventArgs mouseEvent){

//Discussed later in this chapter

}

}

Developer’s Guide 29

Chapter 5: Views Displaying a Remoted View in a Client

Displaying a Remoted View in a Client
Displaying a remoted view in a client application is quick and easy. Use the view
element, available in the client STK, to add the view where it should be displayed.
Below is an example of a view called viewName being added to a client written in
HTML/Javascript:

A few points to note:
• The view is attached only after the client has an active connection. Typically

the listener for the CONNECTED_CHANGED event will be included alongside the
rest of the client initialization code.

• The client view will not attach to the service application unless the name of
the view being added to the client matches the name that was registered for
the service view.

Handling User Input
PureWeb allows developers to add events that capture keyboard and mouse
input. It is also possible to simulate keyboard input for touch-screen devices.

Keyboard and Mouse Events

Keyboard and mouse events that occur on the client application are captured by
the PureWeb view, and sent to the service application where the are handled by
the (I)RenderedView interface’s postKeyEvent and postMouseEvent
functions. Developers define how the service application responds to input
events from the client based on the content of these events.
The actual content of postKeyEvent and postMouseEvent depends on the
framework used for the GUI (Windows Forms, Microsoft Foundation Class (MFC),
QT, Swing, etc.).

1 <div id="MyViewDiv" class="purewebview" style="width: 100px;
height:100px;"></div>

<script type=’text/javascript’>

pureweb.listen(pureweb.getClient(),
pureweb.client.WebClient.EventType.CONNECTED_CHANGED,
attachViewOnConnect);

var attachViewOnConnect = function(event) {

if (event.target.isConnected()) {

myView= new pureweb.client.View({id: MyViewDiv', 'viewName':
'MyView'});

}

};

</script>

Developer’s Guide 30

Chapter 5: Views Handling User Input

Keyboard Input Example

Below is an example of how to capture and handle a keyboard event in C# using
the Windows Forms framework:

In the above example, postKeyEvent starts by determining if the Alt key is
down (line 14), as this will impact the key code that gets sent.
Next, the key code and context code are determined (lines 16 - 18).
Then, the message is interpreted based on whether Alt or F10 are pressed.
Finally, the message, key code and context code are passed to PostMessage (line
26), a part of Windows made available through user32.dll (line 8).
The PostMessage function will generate the keyboard event in the appropriate
window, just as though the client had actually interacted with the service
application directly without the PureWeb layer.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

//...

const int WM_KEYDOWN = 0x100;

const int WM_KEYUP = 0x101;

const int WM_SYSKEYDOWN = 0x104;

const int WM_SYSKEYUP = 0x105;

[return: MarshalAs(UnmanagedType.Bool)]

[DllImport("user32.dll", SetLastError = true)]

static extern bool PostMessage(IntPtr hWnd, UInt32 Msg, IntPtr
wParam, IntPtr lParam);

//...

public void postKeyEvent(PureWebKeyboardEventArgs keyEvent){

bool isAltDown = 0 != (keyEvent.Modifiers &
Modifiers.Alternate);

int wParam = (int)keyEvent.KeyCode;

int lParam = isAltDown ? (1 << 29) : 0; // "context code";

int message;

if (isAltDown || keyEvent.KeyCode == KeyCode.F10){

message = keyEvent.EventType == KeyboardEventType.KeyDown ?
WM_SYSKEYDOWN : WM_SYSKEYUP;

}else{

message = keyEvent.EventType == KeyboardEventType.KeyDown ?
WM_KEYDOWN : WM_KEYUP;

}

PostMessage(this.Handle, (UInt32)message, new IntPtr(wParam),
new IntPtr(lParam));

}

Developer’s Guide 31

Chapter 5: Views Handling User Input

Mouse Input Example

The next example shows how mouse events would be captured by the same C#
application and using the Windows Forms framework:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

public void PostMouseEvent(PureWebMouseEventArgs mouseEvent){

System.Windows.Forms.MouseButtons buttons =
System.Windows.Forms.MouseButtons.None;

if (0 != (mouseEvent.Buttons & PureWeb.Ui.MouseButtons.Left))
buttons |= System.Windows.Forms.MouseButtons.Left;

if (0 != (mouseEvent.Buttons & PureWeb.Ui.MouseButtons.Right))
buttons |= System.Windows.Forms.MouseButtons.Right;

if (0 != (mouseEvent.Buttons & PureWeb.Ui.MouseButtons.Middle))
buttons |= System.Windows.Forms.MouseButtons.Middle;

if (0 != (mouseEvent.Buttons &
PureWeb.Ui.MouseButtons.XButton1)) buttons |=
System.Windows.Forms.MouseButtons.XButton1;

if (0 != (mouseEvent.Buttons &
PureWeb.Ui.MouseButtons.XButton2)) buttons |=
System.Windows.Forms.MouseButtons.XButton2;

switch (mouseEvent.EventType){

case MouseEventType.MouseEnter:

OnMouseEnter(EventArgs.Empty);

break;

case MouseEventType.MouseLeave:

OnMouseLeave(EventArgs.Empty);

break;

case MouseEventType.MouseMove:

OnMouseMove(new MouseEventArgs(buttons, 0, (int)mouseEvent.X,
(int)mouseEvent.Y, (int)mouseEvent.Delta));

break;

case MouseEventType.MouseDown:

OnMouseDown(new MouseEventArgs(buttons, 0, (int)mouseEvent.X,
(int)mouseEvent.Y, (int)mouseEvent.Delta));

break;

default:

Trace.WriteLine("Received unknown mouse event type {0}.",
(int)mouseEvent.EventType);

return;

}

}

Developer’s Guide 32

Chapter 5: Views Handling User Input

The above example boils down to two key operations. The first set of conditional
statements takes the PureWebMouseEventArgs argument and converts them to
a WinForms button object based on which buttons were clicked.
The switch statement determines which type of mouse event was reported by
the PureWeb client, and then fires the corresponding WinForms mouse event
with the computed buttons object.

Converting Touch-Screen Input to Keyboard
Events

It is possible for PureWeb clients to simulate keyboard presses for touch-screen
devices. Fundamentally, this is achieved by creating a key-down command when
certain parts of the screen are touched.
An example of this approach is provided in the HTML5 Asteroids sample
application, though a similar interface could be achieved in Android or iOS.
Notice, when the application runs (for instructions on how to build the
application, refer to the Quick Start Guide: HTML5 Client), that a button panel at
the bottom of the screen allows users to play the Asteroids game on touch-screen
devices:

The code used to implement this button panel is described below. The code can
be found in the following file:
[PureWeb_directory]\SDK\Samples\Asteroids\AsteroidsClientHTML5

Developer’s Guide 33

Chapter 5: Views Defining Image Quality for Views

When the user touches a button on the panel, the client application simulates a
key press by sending a command to PureWeb (for more information on
commands, see section “Commands” on page 36):

Defining Image Quality for Views
Developers can control the quality and encoding format of the views displayed in
a client application.
Quality refers to the clarity and number of visual artifacts present in the view.
When quality is low, the fidelity of the images generated by the service is low, and
the size of each view update is smaller. Lowering view quality can therefore be
used to conserve bandwidth, reduce latency, and improve performance.
Encoding format refers to the format (mime type) in which the image is
transmitted, such as JPEG, PNG, or tiles.
PureWeb allows developers to set image quality and encoding format for two
image transmission modes: interactive and non-interactive.
• Interactive mode: the user is interacting with the view, for example when

clicking and dragging the mouse to rotate a 3D model or pan a 2D diagram.
• Non-interactive mode: the view is not processing any input event. Because

the quality of the images sent in non-interactive mode is usually higher than
in interactive mode, this mode is also referred to as “FullQuality”.

A PureWeb application’s encoder configuration is therefore the combination of
quality and encoding format for each of these modes. For example, it is possible
to set the application to transmit JPEG images at 30% quality when the user is
interacting with the view, and to transmit full-quality PNG images when the user
is not. Every client, for each view, can have a different configuration.
The sample applications offer an easy way to manipulate the encoding
configuration settings and see their effect on the fly. For more information, refer
to the section “See It In Action” on page 35.

1

2

3

4

5

6

7

8

9

function simKeyDown(e, keyCode) {

//Simulate a keyboard event

var eventObj = queueKeyboardEvent('KeyDown', keyCode);

//Suppress the default action e.preventDefault();};//Send a
keyboard event using a PureWeb commandfunction

queueKeyboardEvent(eventType, keyCode) {

//Create the keyboard event as a JS object

var parameters = {'EventType': eventType, 'Path': 'AsteroidsView',
'KeyCode': keyCode, 'CharacterCode': 0, 'Modifiers': 0 };

//Send the PW command

pureweb.getClient().queueCommand('InputEvent', parameters);};

Developer’s Guide 34

Chapter 5: Views Defining Image Quality for Views

Using the encoder configuration API is entirely optional. The default configuration
is tiles at 30% quality for interactive mode and JPEGs at 70% quality for
non-interactive mode.

Setting the Encoder Configuration

The Diagnostics Panel’s graphics interface makes it easy to change the encoding
configuration and see the impact of these changes on the fly. For more
information, refer to the sections “See It In Action” on page 35 and “Diagnostics
Panel” on page 57. However, changing the configuration in the Diagnostics Panel
is not a permanent operation; for the changes to be permanent, it is necessary to
change the encoder configuration programmatically as described in this section.

Each PureWeb view exposes a reference to an EncoderConfiguration.
Changing the encoder configuration is simply a matter of creating or modifying
two EncoderFormat objects within this EncoderConfiguration. The code
below illustrates how to accomplish this in Silverlight.

Note: A few notes about encoding format:
• PNG images, unlike JPEG and tiles, are always transmitted at 100%

quality, because they use loss-less encoding. If the configuration is
set to send PNGs at 40% quality, the PNGs will still be sent at 100%
quality.

• When using JPEG or PNG, the application updates the entire view.
Tiles, on the other hand, are small header-less JPEG images which
only update the parts of the view that have changed since the last
update; this sends noticeably less data to the clients.

• Tiles require more computational effort on the part of the computer
running the service application. Although this encoding format is
supported in all client platforms, tiles perform best when the client
application is Flex or Silverlight; on other platforms, JPEGs perform
best.

Note: The PureWeb APIs used for encoding configuration have changed
between version 3.1 and 4.0. If you developed applications using 3.1,
refer to the 4.0 release notes for more information about what changed
and for backward compatibility considerations.

1

2

3

MyView.EncoderConfiguration.InteractiveFormat.Quality = 45;

MyView.EncoderConfiguration.InteractiveFormat.MimeType =
"image/tiles";

MyView.EncoderConfiguration.InteractiveFormat.Quality = 90;

MyView.EncoderConfiguration.FullQualityFormat.MimeType =
"image/jpeg";

Developer’s Guide 35

Chapter 5: Views Defining Image Quality for Views

The EncoderFormat further exposes a parameters dictionary as an extension
point. These parameters are also made available on the service side, as
EncoderParmeters on the RenderTarget interface. This allows developers to
make potential rendering decisions based on the encoding format and quality
that will eventually be used.
To determine whether to use the settings for interactive or non-interactive
modes, the application relies on the value for the SetViewInteracting
parameter on the ViewManager. If this value is set to true, the application will
use the interactive mode settings, if it is set to false, the application will use
non-interactive (full quality) mode settings.
In the example below, the SetViewInteracting parameter is set to true.

See It In Action

The sample Scribble application provides a quick way to see interactive quality in
action. The example below is based on the Silverlight client. For instructions on
how to build and run this client, refer to the Quick Start Guide: Silverlight Client
document.
To view the Diagnostics Panel, launch the client with the _diagnostics=true
parameter in the URL. With the diagnostics panel expanded, set Non-interactive
mode quality at its highest and Interactive mode quality at its lowest, and apply
the changes. Then, in the application’s main screen, change the color to blue (the
change in quality is most noticeable with the color blue). Notice that the image
quality is lower while drawing, and is restored to higher quality when the user
stops drawing.

1 protected override void OnMouseDown(MouseEventArgs e)

{

if (e.Button == MouseButtons.Left || e.Button ==
MouseButtons.Right)

{

// Tell the StateManager we are interacting with this view

Program.StateManager.ViewManager.SetViewInteracting(ViewName,
true);

Capture = true;

BeginStroke();

m_currentStroke.Add(e.Location);

DrawCurrentStroke();

RemoteRender();

}

Developer’s Guide 36

Chapter

6 Commands

This chapter describes how to generate commands on the client application, and
how to handle these commands in the service application.

About Commands
A command is an instruction sent from the client for the service to execute a specific
function.
The command is expressed as a string and uses the client-side queueCommand
function; it can have arguments and, optionally, a callback can be triggered on the
client, completing the communication loop.
In PureWeb, commands can only originate from clients, and they are always
handled by the service.
When communications need to occur from the service to the client, the best course
of action is to post the information to the application state tree. For more
information, see “Application State” on page 40.
Here are some scenarios from the sample applications illustrating the use of
commands:
• In Scribble, when a user clicks on the Erase All button to restore the canvas to

its blank state, the client application sends a Clear command.
• In both Scribble and Asteroids, when the user clicks on the Share button, the

client sends a generateShareURL command.

Developer’s Guide 37

Chapter 6: Commands Setting Up Commands on the Service

Setting Up Commands on the Service
Before a client can send commands, the service must be set up to handle them
correctly. This consists in a single line of code that adds a UI handler, specifies the
command string, and defines the handling function.
Here’s an example, taken from the Scribble sample application.
When a user clicks on the Erase All button to restore the canvas to its blank state,
the client application sends a Clear command.
The code to set up this Clear command in a C++ service application would look
like this:

In this example, the command string is “Clear”, and the user-defined function that
will run when the command is received from the client application has been
named OnExecuteClear.

Registering and Unregistering Command UI
Handlers

To ensure that all commands are correctly caught and handled by the service
application, command handlers should be added early on in the program
initialization.
The PureWeb client APIs also include RemoveUiHandler() functions. Using these
is not mandatory, but it is recommended to unregister handlers when terminating
the service application.

Populating Callback Parameters on the Service

Client applications can register a callback function in the queueCommand call. For
an example of how this is done, see “Example 3” on page 38.
If the client has specified a callback, the service application can define (populate)
response parameters for that callback. Below is an example from a C# command
handler:

In this example, any content added to responses will be made available to the
client callback function in the form of an XML element.

1 CScribbleApp::StateManager().CommandManager().AddUiHandler("Clear"
, Bind(this, &CScribbleView::OnExecuteClear));

1

2

3

4

5

private void OnExecuteClear(Guid sessionId, XElement command,
XElement responses)

{

//Add responses to the provided response object.

responses.Add("Foo");

}

Developer’s Guide 38

Chapter 6: Commands Sending Commands from the Client

Sending Commands from the Client
In the client application, commands are sent to the service application using the
queueCommand function. This function adds the command, including any of its
arguments, to the outgoing command queue, which delivers the commands.
The command string registered on the client side must match the string as set up
in the service side precisely, otherwise the command will not be correctly
handled.
The examples below illustrate queueCommand instruction, some straightforward,
some complex with arguments and callbacks.
All are examples of the Clear command from the sample Scribble application
discussed earlier in this chapter.

Example 1

This is a simple command in Silverlight:

In this example, the Clear command was already registered in the service
application, allowing it to respond accordingly.

Example 2

This is a command with arguments but no callback, using the Android API:

Example 3

This is a command with both arguments and a callback, using the JavaScript API:

In this last example, the callback is in-line, but this doesn’t have to be the case.
The callback sends a logging message to the console, including the callback
arguments: the object that sent the callback, and the callback parameters
expected from the service application.

1 Framework.Instance.Client.QueueCommand("Clear");

1

2

3

Map<String, Object> parameters = new HashMap<String, Object>();

parameters.put("argumentName", “firstArgumentValue”);

framework.getWebClient().queueCommand("Clear", parameters);

1

2

3

4

5

6

pureweb.client.getClient().queueCommand(‘Clear’,

{argumentName:’argumentValue’},

function (sender, args) {

//Callback

console.log(‘Command completed: ‘ + args);

});

Developer’s Guide 39

Chapter 6: Commands Sending Commands from the Client

Example 4

Here is another, more practical, example of a command with a callback; in this
Javascript/HTML5 example, the callback is used to alter the user interface:

In this example, the queueCommand function takes a callback, which locates the
relevant button on the page and changes its label to indicate that the command
was successfully processed by the service.

1

2

3

4

5

6

7

8

9

10

11

<script type=’text/javascript’>

function clearCanvas() {

pureweb.client.getClient().queueCommand("Clear", null,
clearCallback);

}

function clearCallback(){

document.getElementById('clearButton').innerHTML = 'Cleared';

}

</script>

<button id=”clearButton” onclick="clearCanvas();">Clear</button>

Developer’s Guide 40

Chapter

7 Application State

This chapter describes how to use application state as a means of communicating
information between the service and clients.

About Application State
The state of the application is essentially a hierarchical set of properties and values
which is automatically shared and synchronized between the service application,
and any clients using or collaborating with that service application. The property
values are stored in XML format.

For example, there are many properties that can describe the state of a specific
button, such as whether it is enabled or even visible, and what text or image it
contains. Another example of a property value that could be stored in application
state would be the color of an element on the screen, if the user has the ability to
change that color.

The main purpose of application state is to keep the values of these properties
synchronized between the service and its clients (there is one application state for
each instance of a service). Developers decide which properties should be stored
in the application state of their own application.

The Diagnostics Panel’s graphic interface offers a user-friendly mode of viewing the
state of an application. For more information, see “Diagnostics Panel” on page 57,
and in particular the section “AppState Tab” on page 60.

Developer’s Guide 41

Chapter 7: Application State State Tree

When to Use Application State

When developers need to communicate information between client and service
applications, they can use either application state or commands.
The method chosen in a particular case depends on what will be sent and where.
Although there are no hard and fast rules dictating when to use one method over
the other, below are general guidelines:
• Application state is best used for information that is relevant to every client

and service in a session, as it ensures that all clients can be notified.
• Application state can also be used to communicate from a single client to the

service, if it is important that all other clients are aware of this
communication.

• A command is useful for sending messages between a service and a single
client.

State Tree
The application state is managed using the StateManager class. The information
is stored as a hierarchical XML tree.
This makes application state very flexible: it can contain basically anything that
can be stored as an XML element or collection of elements.
When referring to a value in the tree, use a path notation, which corresponds to
the hierarchy of XML elements enclosing that value, for example:
/PureWeb/InteractiveQuality

/PureWeb/FullQuality

A few of the elements in the PureWeb application state tree have particular rules
to follow, as described below.

The <ApplicationState> Root Element

All application state elements are children of the root <ApplicationState>
element. However, when setting or accessing elements within application state,
this first level will not be included in the path.

The <PureWeb> Element

The <PureWeb> element is created by the StateManager class upon
initialization.
It contains information about the service application, image quality properties
and session information which is primarily used when multiple clients are
collaborating. This information is entirely maintained by PureWeb.
To prevent conflicts, it is strongly recommended that users not write to the
<PureWeb> element or its children.

Developer’s Guide 42

Chapter 7: Application State Initializing Application State

Below is an example of an application state tree.

In the above example, which is taken from the Scribble sample application, the
<ScribbleColor> element is the only user-provided value in the state tree.

Initializing Application State
The application state must be initialized before a PureWeb application can start
reading from and writing to it.
This initialization needs to occur when the service application is started. Typically,
the state initialization code should be placed early on in the initialization of the
service.
To initialize application state, create new StateManager and
StateManagerServer objects in the service application. Here is an example of
how this was done in the Scribble C# sample application

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

<ApplicationState
xmlns:typeless="http://calgaryscientific.com/typeless/2008">

<PureWeb>

<Application>ScribbleApp</Application>

<ClientCommandFiltering>1</ClientCommandFiltering>

<InteractiveQuality>30</InteractiveQuality>

<FullQuality>70</FullQuality>

<Sessions>

<SessionId-01000000-0000-0000-0000-000000000000 />

</Sessions>

<Collaboration>

<OwnerSession>01000000-0000-0000-0000-000000000000</OwnerSes
sion>

<Sessions>

<SessionId-01000000-0000-0000-0000-000000000000>

<DefaultColor>#FFFF0000</DefaultColor>

<UserInfo />

</SessionId-01000000-0000-0000-0000-000000000000>

</Sessions>

</Collaboration>

</PureWeb>

<ScribbleColor>White</ScribbleColor>

</ApplicationState>

1

2

3

StateManager = new PureWeb.Server.StateManager("ScribbleApp",
Dispatcher.CurrentDispatcher);

StateManagerServer server = new StateManagerServer();

server.Start(StateManager);

Developer’s Guide 43

Chapter 7: Application State Interacting With The Application State

Creating State Initialization Handlers

The StateManager object fires an event when it has been successfully initialized.
A handler can be chained to this event, so that the application can perform
actions, for example load initial values for some properties, when this occurs.
Such handlers can be on either the service or the client application. They can
include any command which interacts with application state: add, remove,
modify, or read. For information about writing these commands, see “Interacting
With The Application State” on page 43.
Here’s an example of adding a user-defined handler called ModifyMyAppState in
a C# service application.

Client applications can listen for the event which is fired when the application
state is initialized. Here’s what this might look like in JavaScript:

Alternatively, to allow a client application to interact with application state when
it did not listen for the state initialization event, query for the
isStateInitialized status, as shown below in JavaScript:

Interacting With The Application State
Once state is initialized on the service, or the client has been notified that state
has been initialized, the application can interact with StateManager.
This interaction can be direct, or through change handlers.

Direct Interaction

The primary purpose of application state is to provide a synchronized data store
between a service and its clients; it is therefore not surprising that the most
common use of application state is to read and write values directly to it.
Recall that values in application states are referenced by a path which
corresponds to the tree hierarchy, and that the <ApplicationState> element is
not included in the path.

1 StateManager.Initialized += new EventHandler(ModifyMyAppState);

1

2

3

4

pureweb.client.listen(pureweb.client.getClient(),
pureweb.client.Framework.EventType.IS_STATE_INITIALIZED,
function(){

//Things to do once state has been initialized

});

1

2

3

if (pureweb.client.framework.isStateInitialized()){

//Interact with state

}

Developer’s Guide 44

Chapter 7: Application State Interacting With The Application State

Writing to Application State

The examples below shows how to write a string into state.
In these particular examples, the value would be accessible in the path
/ScribbleColor.

In Silverlight:

In Java (in this case, the framework object is just an instance of Framework):

Reading from Application State

Values can be read from state in a similar way.
In Silverlight:

In Java (as above, the framework object is just an instance of Framework):

Advanced Methods

PureWeb supports a variety of methods to accomplish more complex application
state reading and writing tasks.

getValueAs()

This method allows developers to retrieve parsed values from the application
state; a data type must be specified. Refer to the PureWeb APIs reference
material for more information on this method.

setTree() and getTree()

These methods allow developers to get or set a section of application state. They
take and return XML elements which can be read from or inserted into the path
specified in the arguments.

1

2

3

4

Framework.Instance.State["ScribbleColor"] = “red”;

//OR... (where m_stateManager is an instance of StateManager

m_stateManager.XmlStateManager.SetValue("/ScribbleColor", “red”);

1 framework.getState().setValue("ScribbleColor", “red”);

1

2

3

4

var color = Framework.Instance.State["ScribbleColor"];

//OR...

Framework.getState().GetValue("/ScribbleColor");

1 framework.getState().getValue("/ScribbleColor");

Developer’s Guide 45

Chapter 7: Application State Change Handlers

The objects that store XML trees are platform-specific, represented in the native
XML data type for that language, for instance XElement (C# and Silverlight) or
Element (Java). Refer to the PureWeb API reference material to find out the exact
object type used.
The only PureWeb client API to deviate from this model is HTML5. In this API,
setTree() and getTree() take and return a JSON object, because this is a more
intuitive format for storing complex data in JavaScript. However, the API does
provide getTreeAsXml() and setTreeAsXml() if XML is the desired format.

stateLock

In mutli-client environments, the application state should not be assumed to be
perfectly synchronized, due to network latency or other factors. For this reason, it
is possible to request a lock on the StateManager, which ensures that no
changes to the application state take place while the lock is held.
Below is an example of how to acquire a state lock in Objective C. Once acquired,
the stateLock provides an API similar to StateManager:

Change Handlers
Change handlers allow developers to respond to a particular change in
application state by registering a change handler. These handlers come in two
varieties, value change handlers and child change handlers.

Value Change Handlers

Value changed handlers are triggered when a specific value changes. They can be
added to any path in the application state tree. If the value at that path changes,
the associated handling function will be called.
Typically, value change handlers are defined inside the application state
initialization function. Below is an example using the C++ API:

In this example, when the value at /PureWeb/Profiler changes, the service
application will execute OnProfilerStateChanged.
The function that handles a state change event (in this case
OnProfilerStateChanged), provides a ValueChangedEventArgs argument.
This argument contains information about the change that triggered the event,
including the path at which the change occurred and the new value.

1 PWXmlStateLock *stateLock = [_stateManager acquireLock];

1 stateManager.XmlStateManager().AddValueChangedHandler("/PureWeb/Pr
ofiler", Bind(this, &MyApp::OnProfilerStateChanged));

Developer’s Guide 46

Chapter 7: Application State Change Handlers

Child Changed Handlers

Child changed handlers are triggered if any changes occur at or below the
specified path in the XML tree.
Below is an example similar to the above, using Objective C:

1 [[PWFramework sharedInstance].state.stateManager
addChildChangedHandler:@"/PureWeb/Profiler" target:_myApp
action:@selector(OnProfilerStateChanged:)];

Developer’s Guide 47

Chapter

8 Designing the Client
Interface

This chapter describes the options available to developers when creating user
interfaces (UI) for their PureWeb-enabled client applications, and provides
practical examples for adding interface elements such as buttons and linking them
to the service-side functionality.

Feature Set and Appearance
When PureWeb enabling an application, developers link PureWeb to their service
application’s logic, and not to its user interface. They then create the client
application separately, using primarily the native interface elements (buttons,
dialogs, etc.) present on the client platform (Android, iOS, HTML5, etc.). This is
part of what makes PureWeb so flexible and powerful and offers several
advantages:
• Developers can have several client platforms created for the same service, for

example one optimized for viewing in web browsers, and one for tablet.
Creating the clients does not require changes to the service.

• Each client has its own user interface, making the application feel like a native
application on the end user’s device.

• The user interfaces for the PureWeb clients are not limited by the look and
feel of the original application. This is the perfect opportunity to modernize
the appearance of dated legacy software, for example by adding graphics or
transition animations.

Developer’s Guide 48

Chapter 8: Designing the Client Interface Adding a PureWeb Layer to UI Elements

• Developers can change the application feature set depending on the client: it
is not uncommon, for example, for mobile clients to expose only a subset of
features compared to the desktop version. It is also possible to create entirely
new functionality that is not available in the interface of the service
application.

Even the workflow can be changed, if it makes sense for the target audience, as
long as the handling logic is added to the service application. Consider for
example an image manipulation service application which gives users the option
to switch into a zoom mode and only then magnify/miniaturize their image. On an
iOS PureWeb client, this sequence of events could happen automatically when a
pinch zoom in/out is initiated.

The rest of this chapter describes how the native UI elements of a client platform
can be enabled with the PureWeb API to drive the functionality of the service.
The only part of the client’s user interface which is handled differently is the view,
which is essentially a wrapper around the native UI components. For more
information on views, see chapter “Views” on page 25.

Adding a PureWeb Layer to UI Elements
In PureWeb, developers have two options available for communicating
information between the service and its client applications: commands and
appplication state. For more information on these options, see their respective
chapter: “Commands” on page 36, and “Application State” on page 40.
The UI elements in a client application can use either commands or application
state to tell the service how to respond to user interactions.

Using Commands

Commands are a form of communications sent from the client to the service,
requesting the execution of a specific function. PureWeb developers often use
them to tell the service what to do when the end user interacts with an interface
element.
In the example below, a PureWeb command is coupled with the Erase All button,
from the Scribble sample application, to queue the Clear command. This

Note: Client applications are built using the platform’s native functionality, and
therefore the code for coupling these element to PureWeb is unique to
each platform. However, the general pattern remains the same. The
examples in this chapter are written in a combination of HTML and
JavaScript.

Developer’s Guide 49

Chapter 8: Designing the Client Interface Adding a PureWeb Layer to UI Elements

example shows both the HTML and JavaScript necessary to enable this
functionality:

This is a simple case: the button is created with an onclick event handler
(line 7). The event handler points to the clearCanvas function (line 2), which
queues up the desired command, in this case, Clear (line 3).

Using Appplication State

It is often preferable to use application state instead of commands, for example
when communication needs to flow from the service to the client, or in a
collaborative session where multiple client applications using the same service
need to be made aware of a change in a property value.
In the example below, also taken from the HTML5 sample Scribble application, a
select box is tied to the PureWeb application state to trigger a change in the
user’s pen color.

In this example, the developer created a select box for the pen color (lines 7 - 12).
When the user changes the value in this box, the changeScribbleColor
function is called (line 7). This function (line 2) simply gets the value of the
selected option and sets it in application state at the path ‘ScribbleColor’ (line 3).
To extend this example even further, it would be possible to store the list of
possible pen colors in application state, and when this list changed in the
application state, the options in the select box could be dynamically adjusted
accordingly.

1

2

3

4

5

6

7

<script type=’text/javascript’>

function clearCanvas() {

pureweb.client.getClient().queueCommand("Clear");

}

</script>

<button onclick="clearCanvas();">Erase All</button>

1

2

3

4

5

6

7

8

9

10

11

12

<script type=’text/javascript’>

function changeScribbleColor(e){

pureweb.client.getFramework().getState().setValue('ScribbleCol
or', document.getElementById('color').value);

}

</script>

<select onChange="changeScribbleColor();" id="color">

<option value="White">White</option>

<option value="Red">Red</option>

<option value="Blue">Blue</option>

<option value="Green">Green</option>

</select>

Developer’s Guide 50

Chapter

9 The Resource Manager

The Resource Manager interface provides functionality which allows users to
store and retrieve files on the service machine. This feature is commonly used in a
collaborative session, when multiple users are connected to the same PureWeb
session.
The server handles storing the files and providing a temporary access link to
them. Service and client applications can then access the files.
Not all of the methods available in the resource manager interface are described
in detail in this chapter. For additional information, consult the API reference
material. For the service, the information can be found in the following path:
• C++: CSI::PureWeb::Server::IResourceManager
• C#: PureWeb::Server::IResourceManager
• Java: pureweb.server.ResourceManager
For the client, the description for the methods RetrieveObject and
GetResourceURL can be found in the WebClient class of the pureweb.client
package.
Once files are stored using the resource manager, they remain available for as
long as the application session remains active.

Note: The Resource Manager currently has a 2 GB limit, due to how the
RetrieveObject method in the various APIs retrieves the resources.

Developer’s Guide 51

Chapter 9: The Resource Manager Managed Access

Managed Access
Whenever a service application adds a resource to its resource manager, the
resource manager creates a unique identifier (GUID key) for that particular
resource, which can then be used to retrieve it.
If the requesting user is not given the GUID key for a resource, that user will not
be able to access it. A service can therefore decide which GUID key to send to
which client, and hence manage which clients have access to what files.
The service also has the ability to write the GUID keys into PureWeb application
state, thereby allowing clients to access any currently stored files, provided the
clients are made aware of these particular application state paths.
Clients can construct a URL from the GUID key and use this URL to access the
resource directly (in iOS, Java and Android clients), or with a web browser.

Workflow
Typically, the need to store a resource is communicated from the client to the
service through a command. This implies adding to the client a method that sends
the command, and adding to the service a method to handle that command.
The command handler on the service should include the following:
• create the resource,
• store the resource using the Store() method of the resource manager

interface,
• return a GUID key for that resource as a response.
The method sending the command on the client should include the following:
• queue the command,
• wait for a callback that provides the GUID key,
• retrieve the resource using the provided GUID key,
• perform whatever action is needed on the resource, if applicable.

Example - Screen Captures
This section illustrates how the resource manager stores and retrieves screen
captures. The code is in C++ for the service, and in Silverlight for the client.
To try this example, edit the Scribble sample application for these programming
languages. The necessary files are in the installed PureWeb directory on the
server machine:
Service: [PureWeb_location]\SDK\Samples\Scribble\ScribbleAppCpp
Client: [PureWeb_location]\SDK\Samples\Scribble\ScribbleClient

Developer’s Guide 52

Chapter 9: The Resource Manager Example - Screen Captures

Service Application Code (Storing Data)

Assuming that the service will receive a command from the client application to
save a screen capture, the service will first need a handler for that command. In
the Scribble sample application, add the following code to the constructor in the
ScribbleView.cpp file:

This command handler responds to the PureWeb command Save by executing
the OnExecuteSave method, shown below.

This code:
• creates a PureWeb image given the current view’s pixel bits and dimensions

(line 3) -- the variables m_pPixilBits, m_Width and m_Height are defined
elsewhere in the Scribble sample code

• converts the PureWeb image into a JPEG (line 4),
• packs the JPEG into a ContentInfo object (line 5),
• stores the ContentInfo object into the application’s resource manager and

returns a GUID (line 6),
• returns the GUID as ResourceKey to the calling application (line 7).
Next, add a reference to this new method in the header file (ScribbleView.h):

1 CScribbleApp::StateManager().CommandManager().AddIoHandler("Save",
Bind(this, &CScribbleView::OnExecuteSave));

1

2

3

4

5

6

7

8

void CScribbleView::OnExecuteSave(CSI::Guid sessionId,
CSI::Typeless command, CSI::Typeless response)

{

PureWeb::Image image(m_pPixelBits, m_Width, m_Height,
PureWeb::PixelFormat::Bgr24, PureWeb::ScanLineOrder::TopDown, 4);

ByteArray jpeg = PureWeb::JpegEncoder::JpegCompress(image, 80);

ContentInfo content("image/jpeg", jpeg.AsByteArray());

Guid key =
CScribbleApp::StateManager().ResourceManager().Store(content);

response["ResourceKey"] = key;

}

1 void OnExecuteSave(CSI::Guid sessionId, CSI::Typeless command,
CSI::Typeless response);

Developer’s Guide 53

Chapter 9: The Resource Manager Example - Screen Captures

Client Application Code (Retrieving Data)

On the client side, first add a button which, when clicked, will run the method to
request a screen capture of the service application’s view; in this example, the
method is called SaveButton_Click.
To create the button in the sample Silverlight client, add line 2 in the file
MainPage.xaml.

Then, add the SaveButton_Click method to the MainPage.xaml.cs file. In this
example, the code includes both the RetrieveObject and the GetResourceURL
methods, for illustration purposes. The RetrieveObject method would be used
internally by the program and does not display the retrieved resource to the end
user. However, with the GetResourceURL method the user will be able to see the
saved screen capture when the program runs:

1

2

3

<StackPanel Orientation="Horizontal" Grid.Row="0" Grid.Column="2" >

<Button x:Name="save" Content="Save" Margin="4,3,0,3" Width="54"
Click="SaveButton_Click"/>

</StackPanel>

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

private void SaveButton_Click(object sender, RoutedEventArgs e)

{

Framework.Instance.Client.QueueCommand("Save", (o, args) =>

{

if (args.Exception != null)

{

Trace.WriteLine("Except during RPC: " + args.Exception);

return;

}

var key = args.Response.GetTextAs("ResourceKey", Guid.Empty);

//section illustrating the the retrieveObject method

var binaryObject =
Framework.Instance.Client.RetrieveObject(key);

var bitmapImage = new
System.Windows.Media.Imaging.BitmapImage();

using (var stream = new
System.IO.MemoryStream(binaryObject.Object))

{

bitmapImage.SetSource(stream);

}

var image = new Image { Source = bitmapImage };

//section illustrating the getResourceURL method

var resourceUrlText = new TextBox { Text =
Framework.Instance.Client.GetResourceUrl(key), IsReadOnly = true };

//code continued on next page

Developer’s Guide 54

Chapter 9: The Resource Manager Resource Distribution Options

This method:
• queues the Save command and waits for a callback (line 3)
• verifies, when the callback is received, that the storage was successful (line 5)
• looks for the GUID saved in the ResourceKey response path, from the

OnExecuteSave method on the service application (line 10)
• uses the GUID to retrieve the binary representation of the saved image (line 12)
• formats the binary object into a bitmap image (lines 13 - 20)
• generates a unique URL which can be used to access the file indirectly with a

web browser and places it into a text box (line 22)
• creates a new Silverlight stack panel which contains the generated URL path

in its text box and the saved image itself (lines 23- 26)
• creates a child window which pops up and displays the new stack panel (lines

27 - 28)
After editing the sample Scribble application, when it runs next, try the new
screen capture functionality:
There will be a new Save button in the Silverlight client. Click on it; the application
will open a view on top of the current window, with the URL to the file and a
presentation of the JPEG image. Copy and paste this link in a new window to
retrieve the screen capture; this will work as long as the session remains active.
Close the new view using the X in the top right corner.

Resource Distribution Options
Using the Resource Manager, nearly any file can be saved on the service and
retrieved by any user who has been given the unique identifier for that resource,
which gives developers a lot of flexibility with regards to how they distribute
resources. Here are a few examples:
• Single file to single client: a single client requests a file; the service stores the

file and sends the client its GUID key, which the client can then use to retrieve
the requested file whenever desired (within the duration of the service
application session).

23

24

25

26

27

28

29

30

var stackPanel = new StackPanel();

stackPanel.Children.Add(resourceUrlText);

stackPanel.Children.Add(image);

var screenshotWindow = new ChildWindow { Title = "Screenshot
image", Content = stackPanel };

screenshotWindow.Show();

});

}

Developer’s Guide 55

Chapter 9: The Resource Manager Resource Distribution Options

• Single file to selected clients: this is basically the same scenario as for a single
client, except the service application would also send the GUID key to other
selected clients.

• Any file to any client: instead of simply assigning a GUID key to the files at
time of storage, the service could write that GUID key into a descriptive path
in the PureWeb application state, which would allow any and all clients to
access the files.

• Different files to different clients: this would be useful, for instance, to
handle operating system differences. Consider for example the case of a
collaborative text editing application. When saving the file in the resource
manager, the service would save it in two different formats, let’s say a
Windows-targeted .docx file and a .pages file for iOS-based clients. Each file
format would be assigned its own GUID key; the key for the .docx files would
be sent to the Windows clients, and the key to the .pages would be sent to
the iOS-based client.

Developer’s Guide 56

Chapter

10 Debugging

When developing PureWeb applications, the following tools are available to help
with debugging:
• the debugging features of the development platform (Eclipse, Microsoft

Visual Studio, etc.)
• PureWeb’s Diagnostics Panel
• PureWeb logs
This chapter focuses on the Diagnostic Panel, but also provides some information
on the other debugging options.

Platform-Specific Debugging
PureWeb-enabled applications can attach to the debugging functionality of the
development platform.
For example, below are the steps to follow in Xcode for debugging the iOS version
of the sample Asteroids client:
1. Open Xcode and select the relevant project from the Welcome dialog.
2. Open the AppDelegate.m implementation file in the Classes folder and

navigate to the didFinishLaunchingWithOptions function.
3. Click on the side panel beside the editor window to set a breakpoint at the

desired location.
4. Click the Run icon in the top left-hand corner to run the client code and

trigger the breakpoint.
Similar instructions are provided in the Debugging section of the Quick Start
Guide for each of the supported development platforms.

Developer’s Guide 57

Chapter 10: Debugging Diagnostics Panel

Diagnostics Panel
The Diagnostics Panel contains a set of built-in tools to help configure and
troubleshoot PureWeb client applications during the development phase.
The panel allows developers, for instance, to change on the fly the image
encoding configuration to help decide which one is optimal. This panel is also
useful to see at a glance what happens within application state during user
interactions with the client application.

Adding a Diagnostics Panel to a Client

As discussed in chapter “Designing the Client Interface” on page 47, when adding
user interface elements to a PureWeb client, developers use primarily the native
elements present on the client platform. The same applies when adding the
Diagnostics Panel. For example, in HTML5, the panel is added as a div; in
Silverlight, it is added as a grid.

HTML5

Silverlight

Most sample client applications include a Diagnostics Panel; review their code for
examples of how this panel has been added. Sample applications are described in
the Quick Start Guide for each supported client platform.

1 <div id="pwDiagnosticsPanel"></div>

1

2

//in header

xmlns:Diagnostics="clr-namespace:PureWeb.Client.Diagnostics;assemb
ly=PureWeb.Client.Silverlight"

//in body of code

<Diagnostics:DiagnosticsView Grid.Row="0" Grid.Column="0"
HorizontalAlignment="Stretch" VerticalAlignment="Stretch"/>

Note: Once the panel is added, how it is accessed will vary based on the
platform. For example, in Silverlight or HTML5, add the
_diagnostics=true parameter to the client application’s URL to view
the panel. In the iOS client, a Diagnostics button will appear in the
interface.

Developer’s Guide 58

Chapter 10: Debugging Diagnostics Panel

Using the Diagnostics Panel

Once added, the panel will have four tabs or five tabs, depending on the
programming language. This section describes the functionality available in each
tab.

Options Tab

The Options tab, shown below, is used to define options that impact image
bandwidth and quality.

Client Side Filtering

When client-side filtering is enabled, the system automatically filters out
duplicate or redundant commands sent from the client to the service, thereby
reducing bandwidth. For example, when drawing in Scribble, if this option is
enabled, PureWeb will send enough commands to the service to ensure the
shape of the scribbles is displayed correctly, but will filter out the rest.
Client-side filtering is enabled by default and is set using the
<ClientCommandFiltering> element in the application state. Depending on
the client API, the value can be set to either true (enabled) or false, or it can be
set to 0 (disabled) or 1.
The Options tab of the Diagnostics Panel provides a shortcut for this parameter,
which eliminates the need to manually change it in application state. To enable or
disable this feature, simply add or remove the checkmark in the Client side
filtering checkbox.

Developer’s Guide 59

Chapter 10: Debugging Diagnostics Panel

Encoding Configuration

In PureWeb applications, it is possible for the service to send images of a different
quality and mime type when the user is interacting with a view, and when the
user is not.
The main intent of this feature is to conserve bandwidth and reduce latency by
sending images of lower quality during user interaction.
How this feature is implemented in the code is described in detail in the section
“Defining Image Quality for Views” on page 33.
The Options tab of the Diagnostics Panel provides a user-friendly visual interface
for manipulating these encoding configuration parameters. It also allows
developers to see on the fly the impact of their changes.
The values for Interactive mode and Non-interactive mode can be set completely
independently of each other.
• Mime type: select a value from the drop-down box.
• Quality: slide the cursor to the right or to the left to set the quality of the

images higher or lower. Accepted values range from 0 (lowest quality) to 100.
Click Apply to commit the changes. Interact with the view to see the impact of
the changes.

Trace Tab

The Trace tab will display any information that developers choose to trace within
a client application. In the example below, the developer has chosen to trace
color changes within the sample Scribble application.

Developer’s Guide 60

Chapter 10: Debugging Diagnostics Panel

By default, no information is traced. To set a trace, use the client API’s
PureWeb.Diagnostics.Trace namespace.
For example, the code for implementing the above trace in an HTML5 client
would be as follows:

The Diagnostics Panel’s Trace tab also offers some additional functionality:
• To change the trace size (number of traced transactions stored in memory),

type the desired size in the text box provided.
• To reset the trace size back to the default value, click the Reset Trace Size

button.
• If the trace size is a value larger than can be displayed in the Trace tab, the

system will display a scroll bar on the side, which can be used to navigate to
the bottom and see the latest lines added to the trace. When the Autoscroll
Trace check box is selected, the system will automatically scroll to the
bottom.

In addition to this trace feature, the PureWeb server and service application also
write messages to log files, which are displayed on the server. For more
information, see the Logs chapter of the PureWeb Server Administration Guide.

AppState Tab

The AppState tab of the Diagnostics Panel allows developers to see the
application state at a glance.

Since the application state is stored in memory only, this tab is the easiest way to
quickly determine how user interactions in the client are reflected in application
state.
Some changes will require a refresh before they are displayed in this tab.

1 pureweb.client.diagnostics.trace("Color is now: " +
e.getNewValue());

Developer’s Guide 61

Chapter 10: Debugging Diagnostics Panel

Bandwidth Tab

The Bandwidth tab of the Diagnostics Panel is used to test the network
connection between the PureWeb server and the PureWeb service application to
measure latency and bandwidth.

To test latency, enter the number of iterations that should be included in the test
and click the Test Latency button. The system will return results that include
minimum, average, and maximum latency.
To test bandwidth, enter the number of payload bytes and click the Test
Bandwidth button. The system will return results that include minimum, average,
and maximum bandwidth.

Profiling Tab

The Profiling tab is available only in the Diagnostics Panel for HTML5 client
applications.
Click the Enable Profiling checkbox to display a profiling report in XML format.
This report contains measurements on how long it takes the PureWeb application
to perform certain actions, such as building requests and parsing responses. An
example of this report is shown below.

Developer’s Guide 62

Index

A
application state

child changed handlers 46
description 12
get and set methods. 44
hierarchichal XML tree 41
initializing 42
keeping synchronized 14
overview 40
PureWeb element 41
reading from state 44
requesting a lock 45
retrieving parsed values 44
root element 41
value changed handlers 45
viewing in the Diagnostics Panel 60
when to use 41
with UI elements. 49
writing to state 44

C
child changed handlers in application state . 46
client

adding a command to a UI element 48
adding a PureWeb layer to UI elements. . . 48
description 10
feature set and appearance 47
modify a UI element using application state. 49
supported languages 10
UI elements and a platform’s native

functionality 48
client side filtering 58
command

adding to a UI element 48
description 12
example with arguments and callback . . . 38
registering a UI handler 37
response parameters for callback 37
sending from client 38

setting up on the service 37
UI handler 37
when to use 41

communication flow 13

D
debugging 56

attaching to a debugger 56
Diagnostics Panel 57

Diagnostics Panel 57
adding to a client 57
AppState tab 60
Bandwidth tab 61
client side filtering 58
encoding configuration 59
Options tab 58
Profiling tab 61
Trace tab 59
using to measure bandwidth 61
using to measure latency 61

E
encoder configuration for images 33
encoding configuration

setting from the Diagnostics Panel 59
event

capturing a keyboard event 30
capturing a mouse event 31
converting touch-screen input to keyboard

events. 32
description 13

G
getActualSize function26
GUID key 51

Index

Developer’s Guide 63

I
image

default encoding configuration 34
defining encoding format 33
defining quality 33
encoder configuration 33
interactive mode 33
mime type 33
non-interactive mode 33
setting encoder configuration 34

interactive image transmission mode 33

M
mime type

JPEG . 34
PNG . 34
tiles . 34

N
non-interactive image transmission mode . . 33

P
postKeyEvent function26, 29
postMouseEvent function 26, 29
profiling . 61
PureWeb

application enablement process. 16
PureWeb STK

content. 8

Q
queueCommand function 38

R
RenderedView interface

getActualSize function. 26
postKeyEvent function. 26
postMouseEvent function 26
renderView function 26
setClientSize function 26
where to implement 26

renderView function 26
resource manager

definition 50
GUID key 51
retrieving data from a client 53
screen capture example 51

storing data in the service. 52
workflow. 51

S
server

communication workflow 20
description 10
purpose 10
setting up the connection with the client . . 22
setting up the connection with the service . 21

service
description 10
graceful disconnect 22
supported languages 10

setClientSize function 26

T
touch-screen devices

converting user input to keyboard events . . 32
tracing information60

V
value changed handlers in application state . .45
view

defining encoding format 33
defining image quality. 33
description 11
displaying in a client 29
generic handling class 26
handling user input 29
keeping up-to-date 14
registering in the service 27
remoting a service view 26
RenderedView interface 26
sample implementation in a service. 27

	Developer’s Guide
	Table of Contents
	Preface
	Introduction
	The STK
	Documentation

	PureWeb Fundamentals
	Basic Architecture
	Service
	Client
	Server

	The Main Building Blocks
	Views
	Commands
	Application State
	Events

	Communication Flow
	How Application State Remains Synchronized
	How Images in Views Are Kept Up-to-Date
	How Events and Commands Are Communicated

	Additional Components

	PureWeb Enablement in a Nutshell
	Setting Up the Server Connection
	Setting Up the Views
	Adding User Input Events to Views
	Designing the Client Interface
	Sending Instructions Using Commands
	Manipulating Application State

	Communicating with the Server
	About the Server
	Server Communication Workflow
	Connecting the Service
	Graceful Disconnect

	Connecting the Client

	Views
	About Views
	Remoting a Service View
	The (I)RenderedView Interface
	Sample Implementation

	Displaying a Remoted View in a Client
	Handling User Input
	Keyboard and Mouse Events
	Converting Touch-Screen Input to Keyboard Events

	Defining Image Quality for Views

	Commands
	About Commands
	Setting Up Commands on the Service
	Registering and Unregistering Command UI Handlers
	Populating Callback Parameters on the Service

	Sending Commands from the Client

	Application State
	About Application State
	State Tree
	Initializing Application State
	Creating State Initialization Handlers

	Interacting With The Application State
	Direct Interaction
	Advanced Methods

	Change Handlers
	Value Change Handlers
	Child Changed Handlers

	Designing the Client Interface
	Feature Set and Appearance
	Adding a PureWeb Layer to UI Elements
	Using Commands
	Using Appplication State

	The Resource Manager
	Managed Access
	Workflow
	Example - Screen Captures
	Service Application Code (Storing Data)
	Client Application Code (Retrieving Data)

	Resource Distribution Options

	Debugging
	Platform-Specific Debugging
	Diagnostics Panel
	Adding a Diagnostics Panel to a Client
	Using the Diagnostics Panel

	Index

